
Billiard systems with polynomial integrals of third and fourth degree

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 2121

(http://iopscience.iop.org/0305-4470/34/11/305)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 2121–2124 www.iop.org/Journals/ja PII: S0305-4470(01)15476-4

Billiard systems with polynomial integrals of third and
fourth degree

Tatiana Kozlova

Department of Mechanics and Mathematics, Moscow Lomonosov State University, Vorob’evy
Gory, 119899 Moscow, Russia

Received 2 June 2000, in final form 9 January 2001

Abstract
The problem of the existence of polynomial-in-momenta first integrals for
dynamical billiard systems is considered. Examples of billiards with irreducible
integrals of third and fourth degree are constructed with the help of the integrable
problems of Goryachev–Chaplygin and Kovalevsky from rigid body dynamics.

PACS numbers: 0210N, 4520J

1. Introduction

Consider a dynamical system with elastic impacts in a domain diffeomorphic to a disc. In what
follows we will call this system a curved billiard. Let θ , ϕ mod 2π be the polar coordinates.
We assume that the Lagrangian has the form

L = 1
2 (θ̇

2 + f (θ)ϕ̇2)− V (θ, ϕ) (1.1)

where f is a regular positive function which in the neighbourhood of the point θ = 0 has
the asymptote f = κθ2 + o(θ2), κ > 0. For example, f = θ2 in the case of a plane
disc; f = sin2 θ in the case of a spherical disc. One can imagine that a system with the
Lagrangian (1.1) describes the motion of a particle with unit mass on a surface of revolution
(homeomorphic to a disc) when potential forces with a potential energy V are applied. This
function is 2π -periodic in ϕ. We are interested in the motion on the disc 0 � θ � θ0,
θ0 = const > 0.

One can make a transition to canonical variables θ , ϕ, pθ , pϕ by the standard procedure.
In these variables a Hamiltonian has the form

H = 1
2 (p

2
θ + g(θ)p2

ϕ) + V (θ, ϕ) (1.2)

where g = 1/f . After an elastic impact on the boundary θ = θ0, generalized velocities
transform as

θ̇ → −θ̇ ϕ̇ → ϕ̇.

Canonical momenta transform in the same way:

pθ → −pθ pϕ → pϕ. (1.3)
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In [1] the problem of existence of polynomial-in-momenta first integrals, independent
from the total energyH , in billiard systems of this type is investigated. It is shown that a linear
integral only exists if ϕ is a cyclic coordinate; existence of a quadratic integral leads to the
separation of variables

V = v(ϕ)

f (θ)
(1.4)

where v is a 2π -periodic function.
The situation with integrals of higher degrees is more complicated. In [1] it is shown that

if a third degree integral is an integral for a billiard in every disc θ � α, α = const > 0, then
it can be transformed to a linear integral (V does not depend on ϕ).

In this paper examples of billiards with irreducible polynomial integrals of third and fourth
degrees are given. The integrable problems of Goryachev–Chaplygin and Kovalevsky from
rigid body dynamics (see, e.g., [2]) are used to construct these systems. A similar method was
used in [3] for the construction of geodesic flows on a sphere with integrals of third and fourth
degrees (see also [4]).

The obtained integrals are integrals only for billiards in a certain domain θ � α. The
dynamics of the constructed system is investigated by the Poincaré cross section method.

2. Third degree integral

Define

f = sin2 θ

4 sin2 θ + cos2 θ
V = − 1

8 sin θ sin ϕ (2.1)

and consider Hamilton’s equations with the Hamiltonian (1.2) (where one should substitute f
and V with formulae (2.1)) which admit the polynomial integral of third degree

� = pϕ

(
p2
ϕ cos2 θ

sin2 θ
+ p2

θ

)
+

(
pϕ cos θ sin ϕ

sin θ
− pθ cosϕ

)
cos θ

2
. (2.2)

This system can be obtained by Routh reduction in the problem on rotation of a heavy
rigid body with a fixed point in the Goryachev–Chaplygin case (see, e.g., [4]). Variables θ ,
ϕ are the nutation angle and the precession angle; the angle of pure rotation is excluded as a
consequence of the area integral which equals zero.

In order to obtain an integrable system with elastic impacts, one should restrict
consideration of motion by the disc

0 � θ � α α = π/2.

When θ = π/2, function (2.2) does not change after substitution (1.3).
One can note that for other values of α the third degree polynomial (2.2) will not be an

integral of a system with elastic impacts. The integral (2.2) cannot be reduced to an integral
of lesser degree, because the potential energy does not have the form of (1.4).

To get an idea about the motions of the system described, we will use the Poincaré cross
section method, that was also used by Birkhoff [5] to describe elastic billiards in convex
domains. On the boundary of a disc (when θ = π/2) the energy integral has the form

p2
θ + 4p2

ϕ − sin ϕ = h. (2.3)

We assume that h > 1 (otherwise the region of a possible motion will be a part of a disc).
When h is fixed, equation (2.3) can be rewritten in the following parametric form:

pθ = (h + sin ϕ)1/2 sinψ pϕ = 1
2 (h + sin ϕ)1/2 cosψ. (2.4)
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The angles ϕ mod 2π , 0 � ψ � π define a trajectory of energy h that intersects the boundary.
Let ϕ0, ψ0 be the values of angles in an initial moment, and ϕ1, ψ1 the values of the first
intersection with the boundary. The dynamics of a system with reflections is reduced to
investigation of a mapping of a ring K = ϕ mod 2π, 0 � ψ � π :

ϕ0, ψ0 → ϕ1, ψ1. (2.5)

This mapping is integrable: an integral is the polynomial (2.2), where one should put
θ = π/2 and make a substitution (2.4). Up to an unessential constant multiplier this integral
has the form

� = (h + sin ϕ)3/2 sin2 ψ cosψ.

The level curves of the function � are invariant curves of the mapping (2.5). The system
has a minimum, a maximum and two saddle points. The lines ψ = 0 and π consist of
singularities.

3. Fourth degree integral

Let

f = sin2 θ

2 sin2 θ + cos2 θ
V = − sin θ sin ϕ

in equation (1.1), in which case this system corresponds to the Kovalevsky case when the area
integral equals zero. The Kovalevsky integral has the form

� = (p2
θ + p2

ϕ ctg2 θ)2 + 4 sin θ sin ϕ(p2
ϕ ctg2 θ − p2

θ )− 8pθpϕ cos θ cosϕ + 4 sin2 θ. (3.1)

This polynomial of fourth degree is an integral of a billiard in the disc

0 � θ � π/2

because when θ = π/2, function (3.1) does not change after substitution (1.3).
On the boundary of the disc the energy integral has the form

p2
θ + 2p2

ϕ − 2 sin ϕ = 2h.

Analogous to section 2, we put

pθ =
√

2(h + sin ϕ)1/2 sinψ pϕ = (h + sin ϕ)1/2 cosψ. (3.2)

The formulae are correctly defined for h > 1. Substituting (3.2) in (3.1) and taking θ = π/2,
we obtain (up to an inessential constant multiplier)

� = (h + sin ϕ) sin2 ψ(2(h + sin ϕ) sin2 ψ − 4 sin ϕ)

which is the integral of Poincaré mapping of the ring

ϕ mod 2π 0 � ψ � π

onto itself. The singularities of the system are two maximum points, two minimum points,
two saddle points, and also the lines ψ = 0 and π .
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4. Conclusion

Polynomial-in-momenta integrals play an important role when the equations of motion of
dynamical systems are investigated. In this paper the structure and conditions for the existence
of linear and quadratic integrals are studied extensively. The problem of polynomial irreducible
integrals of degree �3 is much more complicated and has still not been fully investigated. The
topology of the configuration space also plays a vital part in the existence conditions of new
integrals.

It is highly probable that there are no billiard systems on a plane with additional integrals
of degree �3 (for discussion of this hypothesis see [1]). However, as is shown in this paper,
it is possible to construct examples of billiard systems with irreducible integrals of third and
fourth degree on surfaces of revolution with a specially chosen boundary.
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